Model of Recommendation System for for Indexing and Retrieving the Learning Object based on Multiagent System

Author:

Rocha Campos Ronaldo Lima,Lunardi Comarella Rafaela,Azambuja Silveira Ricardo

Abstract

This paper proposes a multiagent system application model for indexing, retrieving and recommendation learning objects stored in different and heterogeneous repositories. The objects within these repositories are described by filled fields using different metadata standards. The searching mechanism covers several different learning object repositories and the same object can be described in these repositories by the use of different types of fields. Aiming to improve accuracy and coverage in terms of recovering a learning object and improve the signification of the results we propose an information retrieval model based on the multiagent system approach and an ontological model to describe the knowledge domain covered.Keywords: AI in education, multi-agent systems, learning objects, recommendation systems. 

Publisher

Universidad Francisco de Paula Santander

Reference43 articles.

1. Bargmeyer B.E.and Gillman D.W (2011). Metadata Standards and Metadata Registries: An Overview. Available at http://www.bls.gov/ore/pdf/st000010.pdf [Accessed: 10 Jul 2011]

2. Bioethanol (2010) Bank for International Educational Objects, 2008. Available at http://objetoseducacionais2.mec.gov.br/[Accessed: 10 May 2010].

3. CESTA (2010) Collection of Entities Support the use of Technology in Learning. Center for Interdisciplinary Studies in New Technologies in Education (CINTED), 2010. Available at http://www.cinted.ufrgs.br/CESTA/ [Accessed: 2 April 2010].

4. DeLoach, S A; Ojeda, J C G; Valenzuela, J.; Oyenan, W H (2007) Organizationbased Multiagent System Engineering (O-MASE) - Description Framework. Manhattan: Kansas State University,2007.

5. Downes, S (2001) Learning Objects:Resources for distance education worldwide. [online] The International Review of Research in Open and Distance Learning, v. 2, n. 1, DSpace (2010). Available at http://www.dspace.org/ [Accessed: 10 April 2010].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3