entropy of the entangled Hawking radiation

Author:

Denis Olivier

Abstract

Entropic information theory, as a unified informational theory, presents a new informational theoretical framework capable of fully describing the evaporation of the black holes phenomenon while resolving the information paradox, reconciling quantum formalism and relativistic formalism in a single approach. With a set of five new equivalent equations expressing entropy, and by introducing the Hawking temperature into one of them, it is possible to solve the black holes information paradox by being able to calculate the entropy of entangled Hawking radiation, entangled with the fields inside black holes, allowing us to extract information from inside black holes. The proposed model solves the information paradox of black holes by calculating a new entropy formula for the entropy of black holes as equal to the entropy of the pure state of entangled Hawking radiation, itself equal to the fine-grained entropy or von Neumann entropy, itself according to the work of Casini and Bousso equal to the Bekenstein bound which is itself equal, being saturated by Bekenstein-Hawking entropy, at this same entropy. Moreover, since the law of the entropy horizon of black holes turns out to be a special case of the Ryu-Takayanagi conjecture, this general formula for the fine-grained entropy of quantum systems coupled to gravity, equalizes the entropy of entangled Hawking radiation with the gravitational fine-grained entropy of black holes, and makes it possible to relate this resolution of the information paradox of black holes based on the concept of mass of the information bit to quantum gravity explaining the emergence of the quantum gravity process through the fundamentality of entangled quantum information.  

Publisher

Information Physics Institute

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3