Abstract
This paper explores the concept of general covariance in natural laws through the lens of projective geometry and tensor algebra. By introducing the notions of covariance and contravariance using intuitive examples from projections and the scalar product, we illustrate how the covariance of natural laws ensures their universality and objectivity. We also discuss the role of symmetries and conservation principles in relation to the covariant nature of physical equations, highlighting the deep interplay between the mathematical structure of physical theories and the fundamental principles of nature.
Publisher
Information Physics Institute
Reference5 articles.
1. A. Einstein, ”The Foundation of the General Theory of Relativity,” Annalen der Physik, vol. 49, pp. 769-822, 1916.
2. B. F. Schutz, Geometrical Methods of Mathematical Physics, Cambridge University Press, 1980.
3. S. Weinberg, The Quantum Theory of Fields, Cambridge University Press, 1995.
4. E. Noether, ”InvarianteVariationsprobleme,” Nachrichten von der Gesellschaft derWissenschaften zuG¨ottingen, Mathematisch-Physikalische Klasse, pp. 235-257, 1918.
5. H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed., Addison-Wesley, 2002.