The effect of low temperature and nitrogen starvation on the morphological and physiological characteristics of two strains of green microalgae of the genus <i>Lobosphaera</i> sp.

Author:

Shibzukhova Karina A.1,Chivkunova Olga B.1,Lobakova Elena S.1

Affiliation:

1. Lomonosov Moscow State University

Abstract

The effect of nitrogen starvation and, for the first time, low temperature, as well as their simultaneouseffect, on the physiology and ultrastructure of cells of microalgae of the genus Lobosphaera (Chlorophyta, Trebouxiophyceae) was studied. Nitrogen deficiency in both strains led to a decrease in the content ofchlorophyll by three times and an increase in the proportion of carotenoids by two times. A decrease in thecontent of both chlorophyll and carotenoids was observed at +10C. The simultaneous effect of two factorsresulted in a threefold decrease in the chlorophyll content in NAMSU 924/2 and a sixfold decrease inNAMSU (CALU) 1497; the proportion of carotenoids in both strains decreased by 1.52 times. Data onultrastructural changes in cells of microalgae of the genus Lobosphaera under the influence of stress factorshave been obtained. A similar nature of the response in both strains to stress conditions was noted. Nitrogendeficiency led to the accumulation of numerous lipid droplets in the cytoplasm of cells along the cell wall. Long-term incubation on a nitrogen-free medium led to the filling of the entire volume of cells with lipiddroplets, disassembly of the membrane system of chloroplasts, that reduction in sizeand being locatedbetween densely lying lipid droplets. At low temperatures, the number of thylakoids decreased, while theinterthylakoid space and the size of chloroplasts increased. With simultaneous exposure to nitrogen starvation and low temperature, numerous lipid droplets accumulated, the number of thylakoids decreased, the interthylakoid space and the size of the chloroplast increased, which was noted under separate exposure to stress factors. The pyrenoid in both strains did not undergo significant changes in all cases.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3