Sterol Composition of Lichen Peltigera canina When Exposed to Unfavorable Temperatures

Author:

Valitova Yu. N.1,Khabibrakhmanova V. R.12,Babaev V. M.3,Uvaeva V. L.1,Khairullina A. F.1,Rakhmatullina D. F.1,Galeeva E. I.1,Swid M. A.1,Minibayeva F. V.1

Affiliation:

1. Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences

2. Kazan National Research Technological University

3. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences

Abstract

Currently, special attention is paid to the study of the mechanisms of stress resistance of extremophile organisms that can survive in extreme conditions. Such organisms include lichens, which are symbiotic associations of fungi and algae and/or cyanobacteria. The high stress resistance of lichens is due to the presence of a wide range of biologically active metabolites, including sterols. It is known that lichens have a diverse and unique sterol composition, different from that of fungi and algae. Sterol-mediated biochemical mechanisms of stress resistance in lichens have not been fully studied and not systematized. Temperature stress is quite common for lichens, which often grow in unfavorable conditions. It is known that dry lichen thalli are able to withstand temperature changes over large ranges, while hydrated thalli are much more sensitive to unfavorable temperatures. In this work, stress-induced changes in respiratory activity and membrane stability index (MSI), as well as the sterol profile of hydrated lichen thalli, of Peltigera canina (L.) Willd. under the influence of elevated (+40°С) and low (–20°С) temperatures was investigated. It was shown that unfavorable temperatures caused a suppression of respiration rate and a decrease in the MSI of lichen thalli. Chromatomass spectrometric analysis showed the presence of P. canina ergosterol, dehydroergosterol, episterol, lichesterol, and fungisterol. Under the influence of both stress factors, there was a decrease in the level of ergosterol and an increase in the proportion of episterol. Under cold stress conditions, the proportion of dehydroergosterol also increased, the proportion of lichesterol decreased, and the relative content of the more saturated sterol fungisterol remained at the control level. It can be assumed that stress-induced changes in the sterol profile of lichens under low-temperature exposure create an optimal balance of sterols in membranes, which provides conditions for the deployment of a successful strategy leading to the adaptation of the lichen to the action of a stressor.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3