Age and Adaptive Changes in the Photosynthetic Apparatus of Leaves in Winter Green Herbaceous Plant Ajuga reptans L. in the Natural Conditions of the Taiga Zone

Author:

Dymova O. V.1,Zakhozhiy I. G.1,Golovko T. K.1

Affiliation:

1. Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences

Abstract

The formation and functioning of the photosynthetic apparatus (PSA) is under the general control of the plant organism and constantly changing environmental conditions. The authors studied age-related and adaptive changes in the pigment complex, spectral properties, and the state of photosystem II (PSII) leaves of partial shoots of a summer-winter-green herbaceous perennial Ajuga reptans L. (bugle) in connection with overwintering. Rosette leaves of a new generation appearing in May–June quickly accumulated photosynthetic pigments and formed PSA with a maximal quantum efficiency of PSII (Fv/Fm) and actual quantum yield of PSII (ФPSII). In autumn (September–October), the content of chlorophylls was 10 mg/g dry weight, the value of Fv/Fm was 0.8 rel. units, and the level of ФPSII at PAR 130 µmol quanta/(m2 s) was approximately 0.7 rel. units. Overwintered leaves contained half as much photosynthetic pigments, accumulated a significant amount of anthocyanins, and were characterized by low photochemical activity and a high level of de-epoxidation of pigments of the violaxanthin cycle. With the resumption of active vegetation of plants (May), a partial restoration of the pigment pool and the repair of PSA of overwintered leaves were noted, as evidenced by an increase in the quantum yield PSII. The completion of the leaf life cycle was accompanied by a decrease in ФPSII up to 0.5 rel. units and a sharp increase in the thermal dissipation of absorbed excitation energy (NPQ) to 0.9 rel. units. Seasonal changes of spectral properties of leaves and photochemical reflectance indices generally corresponded to the dynamics content pigments and the efficiency of the use of light in photosynthesis. The results obtained indicate a significant transformation of the structural and functional organization of PSA in the ontogeny of overwintering leaves. The genetically fixed property of winter green plants to preserve leaves is based on the ability of their PSA to restore functional activity after the shock impact of overwintering, which is facilitated by a complex of adaptive and protective mechanisms.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3