Interaction of Soluble and Immobilized Manganese-Stabilizing PsbO Protein with Manganese Ions and Isolated D1/D2/cyt b559 Complex of the PSII Reaction Center

Author:

Khristin Mikhail S.1,Smolova Tatiana N.1

Affiliation:

1. Institute of Basic Biological Problems, Scientific Center for Biological Research, Russian Academy of Sciences

Abstract

Interaction of water-soluble and immobilized (on BrCN-activated agarose) manganese-stabilizing protein PsbO with Mn2+ and Mn3+ cations and with preparations of D1/D2/cyt b559 reaction center (RC) of photosystem II was studied. By native electrophoresis, the formation of dimeric and aggregated forms of PsbO protein were found in the presence of Mn2+, Mg2+, or Fe2+ ions. The dimerization of PsbO occurred after ultraviolet irradiation of the protein preparation. The presence of protein-bound Mn3+ cations increased the electrostatic interaction of the immobilized PsbO with the RC. This was evidenced to by higher amounts of CaCl2 that were required for dissociation of the PsbORC complex. It was first demonstrated that the protein exhibited superoxide dismutase (SOD) activity after an electrophoresis in PAAG upon incubation of the gel in an Mn2+-containing solution. Tetrazolium-reductase activity was also ascertained in the protein after its electrophoresis in a mixture with preparations of the oxygen-evolving complex (OEC). It is suggested that the protein interaction with Mn ions and superoxide radicals, as well as short-term UV irradiation, reduces tyrosine and a disulfide bond in the PsbO protein. This yields tyrosil radical and SH-groups participating in redox reactions with ETC components. The interactions of PsbO with Mn cations and UV light, taking place in the chloroplast thylakoids, may regulate the protein binding to RC, modify structural organization of the protein, and promote its participation in alternative pathways of electron transport under the influence of stress factors. The hypothetical scheme of interaction of the immobilized PsbO protein with Mn ions and RC is discussed.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3