Affiliation:
1. Kuban State University
2. Southern Scientific Center of the Russian Academy of Sciences
Abstract
This paper presents an approach that allows for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a semi-infinite segment. However, in applications, there are often cases of their application specified on a finite segment. For these purposes, approximate methods of applying these integral equations have been developed. However, when considering the Wiener–Hopf integral equations generated by mixed problems of continuum mechanics and mathematical physics in a multilayer medium of finite thickness, it turned out that these integral equations are solved exactly both on semi-infinite and finite segments. The approach is based on a new modeling method in differential equations and in some types of integral equations. It allows the reduction of Wiener–Hopf integral equations to infinite systems of linear algebraic equations that are solved exactly. The obtained result opens up the possibility of constructing exact solutions to boundary value problems for deformable stamps and cracks of a new type in bounded bodies.
Publisher
The Russian Academy of Sciences
Reference18 articles.
1. Нобл Б. Метод Винера–Хопфа. М.: ИЛ, 1962. 280 с.
2. Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М., 1974. 456 с.
3. Попов Г.Я. Избранные труды. Т. 2. Одесса: Одесско-полиграфический дом ВМВ, 2007. 516 с.
4. Ma J., Ke L.-L., Wang Y.-S., Aizikovich S.M. Thermal contact of magneto-electro-elastic materials subjected to a condacting flat punch // Journal of Strain Analysis for Engineering Design. 2015. V. 50. № 7. P. 513–527.
5. Александров В.М. Аналитические методы в задачах для тел конечных размеров с несобственно смешанными граничными условиями // Известия РАН. Механика твердого тела. 2014. № 2. С. 51–57.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献