Quaternion Methods and Regular Models of Celestial Mechanics and Space Flight Mechanics: Local Regularization of the Singularities of the Equations of the Perturbed Spatial Restricted Three-Body Problem Generated by Gravitational Forces

Author:

Chelnokov Yu. N.1

Affiliation:

1. Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences, 410028, Saratov, Russia

Abstract

The problem of local regularization of differential equations of a perturbed spatial restricted three-body problem is studied: elimination of singularities (dividing by zero) generated by gravity forces of differential equations of perturbed spatial motion of a material point M, which has a negligibly small mass, in the vicinity of two gravitating points M0 and M1 by writing equations of motion in rotating coordinate systems, the use of new regular variables and the regularizing transformation of time. Various systems of regular quaternion differential equations (RQDE) for this problem are obtained. The following groups of variables act as variables in these equations: (1) four-dimensional Kustaanheimo–Stiefel variables, Keplerian energies and time t, (2) distances from the point M to the points M0 and M1, modules of the vectors of the moment of velocities of the point M with respect to the points M0 and M1, Keplerian energy, time t and Euler (Rodrigues–Hamilton) parameters characterizing the orientations of the orbital coordinate systems in the inertial coordinate system; (3) two-dimensional Levi-Civita variables describing the motion of the point M in ideal coordinate systems, Keplerian energies, time t and Euler parameters characterizing the orientations of ideal coordinate systems in the inertial coordinate system and being osculating elements (slowly changing variables) for the motion of the point M in the neighborhood gravitating point M0 or M1, respectively. To construct the RQDE, the equations of the perturbed spatial restricted three-body problem, written either in nonholonomic (azimuthally free), or in orbital, or in ideal coordinate systems, were used as initial ones; “fictitious” times τ0 and τ1 are used as new independent variables (i.e., regularizing differential transformations of the Sundmann time are used) or angular variables φ0 and φ1, which are traditionally used in the study of orbital motion as part of polar coordinates. To match the two independent variables used in the vicinity of the gravitating points M0 and M1, additional differential equations are used. The obtained various locally regular quaternion differential equations of the perturbed spatial restricted three-body problem make it possible to develop regular analytical and numerical methods for studying the motion of a body of negligibly small mass in the vicinity of two other bodies with finite masses, and also make it possible to construct regular algorithms for the numerical integration of these equations. The equations can be effectively used to study the orbital motion of celestial and cosmic bodies and spacecraft, to predict their motion, as well as to solve problems of controlling the orbital motion of spacecraft and solving problems of inertial navigation in space.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3