Solution of Problems of Elasticity Theory for Multiply Connected Half-Planes and Strips

Author:

Kaloerov S. A.1,Glushankov E. S.1,Mironenko A. B.1

Affiliation:

1. Donetsk National University (DonNU)

Abstract

A general solution of problems of elasticity theory for anisotropic half-planes and strips with arbitrary holes and cracks is presented, which uses the complex potentials of the plane problem of the theory of elasticity of an anisotropic body, conformal mappings, representations of holomorphic functions by Laurent series, and satisfaction of boundary conditions by the generalized least squares method. The problems are reduced to overdetermined systems of linear algebraic equations solved by the singular value decomposition. The results of numerical studies are described for a strip with a circular hole under its tension or under the action of a uniform pressure along a segment of a rectilinear boundary, as well as for the tension of a strip with a circular hole and a crack in the bridge, including those extending to the border of the strip or to the contour of the hole. An isotropic half-plane and a strip with holes and cracks are considered as special cases of the general problem. The influence of the geometric characteristics of holes and cracks, the physical and mechanical properties of the strip on the values and distribution of stresses material was studied.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3