Dynamics of a Wind Turbine with Two Moving Masses Using the Galloping Effect

Author:

Selyutsky Yu. D.1

Affiliation:

1. Research Institute of Mechanics, Lomonosov Moscow State University

Abstract

A wind power plant is considered using the galloping effect, which includes two elastically connected translationally moving bodies: one is a square prism with a permanent magnet rigidly attached to it, and the other is a material point. Electricity is generated by the movement of a magnet in a coil. The influence of the system parameters on the wind speed at which galloping oscillations occur is analyzed. It is shown that a proper choice of parameters makes it possible to significantly expand the range of wind speeds at which periodic regimes exist, in comparison with a system containing one moving body. Approximations are obtained for the amplitudes and frequencies of the limit cycles arising in the system. The evolution of these cycles with a change in the stiffness of the spring between the bodies is studied. It is established that, for certain values of the parameters, the simultaneous existence of two attracting periodic solutions is possible. Conditions are obtained under which the power generated by such a system is greater than the power generated by a system with one moving mass.

Publisher

The Russian Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oscillations of a Wind Power Plant with Several Moving Masses Using the Galloping Effect;Известия Российской академии наук. Теория и системы управления;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3