FINE STRUCTURE OF THE SHELL OF DIPLOID AND TRIPLOID OYSTERS, CRASSOSTREA GIGAS (THUNBERG 1793) (BIVALVIA, OSTREIDAE) REARED IN THE BLACK SEA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The fine structure and chemical composition of the shell growth margin were compared in diploid and triploid oysters, Crassostrea gigas (Thunberg 1793), reared to commercial size in a Crimean marine farm. The diploid oysters were deposited from plankton, whereas the triploid ones were obtained from an Atlantic coast nursery. An electron scanning microscope SEM Hitachi U 3500 with built-in software Oxford Ultin Max 65 for microanalysis was employed in the study. The shell growth margin is shown to consist of two layers: periostracum and prismatic. The periostracum in diploid oysters is smooth and porous, whereas the periostracum of triploid oysters is volumetric and shows longitudinal folds. The prismatic layer of both right and left shell valves consists of prisms surrounded by organic membranes. In contrast to diploid oysters, triploid ones have longer prism facets, their calcite filling is significantly lower than normal, their interprismatic organic membranes are discontinuous and contain calcium carbonate. The proportion of organic matter in diploid oyster shells is significantly higher than that in triploid ones. The factors affecting the fine structure of oyster shells differing in ploidy are discussed.

About the authors

A. V. Pirkova

Kovalevsky Institute of the Biology of the Southern Seas, Russian Academy of Sciences

Author for correspondence.
Email: avpirkova@mail.ru
Russia, 299011, Sevastopol, 2 Nakhimov av.

L. V. Ladygina

Kovalevsky Institute of the Biology of the Southern Seas, Russian Academy of Sciences

Author for correspondence.
Email: lvladygina@yandex.ru
Russia, 299011, Sevastopol, 2 Nakhimov av.

References

  1. Гублер Е.В., Генкин А.А., 1973. Применение непараметрических критериев статистики в медико-биологических исследованиях. Л.: Медицина. Ленинградское отделение. 141 с.
  2. Дарлингтон С.Д., Ла Кур Л.Ф., 1980. Хромосомы. Методы работы. М.: Атомиздат. 181 с.
  3. Лакин Г.Ф., 1973. Биометрия. М.: Высшая школа. 342 с.
  4. Орленко А.Н., 2005. Основные результаты работ по акклиматизации и культивированию гигантской устрицы Crassostrea gigas (Th.) в Чёрном море за период 1985-2004 гг. // Рыбное хозяйство Украины. Спец. вып. № 6. С. 178–180.
  5. Пиркова А.В., Ладыгина Л.В., Холодов В.И., 2020. Биологические и биотехнические аспекты организации и функционирования устричного питомника на Чёрном море. Институт биологии южных морей им. А.О. Ковалевского РАН. Севастополь: ФИЦ ИнБЮМ. 120 с.
  6. Раков В.А., 1987. Биология и культивирование устриц // Культивирование тихоокеанских беспозвоночных и водорослей. М.: Агропромиздат. С. 72–84.
  7. Ahmed M., Sparks A.K., 1967. A preliminary study of chromosomes of two species of oysters (Ostrea lurida and Crassostrea gigas) // Journal of the Fisheries Board of Canada. V. 24. P. 2155−2159.
  8. Almeida M.J., Machadoa J., Moura G., Azevedoc M., Coimbra J., 1998. Temporal and local variations in biochemical composition of Crassostrea gigas shells // Journal of Sea Research. V. 40. № 3–4. P. 233–249.
  9. Checa A.G., Rodrı’guez-Navarro A.B., Esteban-Delgado F.J., 2005. The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves // Biomaterials. V. 26. P. 6404–6414.
  10. Dauphina Y., Alexander D.B., Castillo-Michelc H., Chevallardd C., Cuifa J.-P., Farrea B., Pouvreaue S., Saloméc M., 2013. In situ distribution and characterization of the organic content of the oyster shell Crassostrea gigas (Mollusca, Bivalvia) // Micron. V. 44. P. 373–383. https://doi.org/10.1016/j.micron.2012.09.002
  11. FAO, 2018. The State of World Fisheries and Aquaculture 2018: Meeting the sustainable development goals. Rome: FAO. 227 p. License: CC BY-NC-SA 3.0 IGO. http: // www.fao.org/ 3 / i9540en/i9540en.pdf
  12. Galtsoff P.S., 1964. The American oyster Crassostrea virginica Gmelin // Fishery Bulletin of the Fish and Wildlife Service. Washington. 502 p.
  13. Gerard A., Naciri Y., Peignon J.-M., Ledu C., Phelipot P., Noiret C., Peudenier I., Grizel H., 1994. Image analysis: a new method for estimating triploidy in commercial bivalves // Aquaculture and Fisheries Management. V. 25. P. 697–708.
  14. Green M.A., Waldbusser G.G., Reilly S.L., Emerson K., O’Donnella S., 2009. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves // Limnology and Oceanography. V. 54. № 4. P. 1037–1047.
  15. Harding J.M., Mann D.R., 2006. Age and growth of wild suminoe (Crassostrea ariakensis, Fugita 1913) and Pacific (C. gigas, Trunberg 1793) oyster from Laizhou bay, China // Journal of Shellfish Research. V. 25. № 1. P. 73–82.
  16. Harney E., Artigaud S., Le Souchu P., Miner P., Corporeau Ch., Essid H., Pichereau V., Nunes Flavia L.D., 2016. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas // Journal of Proteomics. V. 135. P. 151–161. https://doi.org/10.1016/j.jprot.2015.12.001
  17. Helm M.M., Bourne N., Lovatelli A., 2004. Hatchery culture of bivalves. A practical manual. Rome: FAO. 177 p. (FAO Fisheries Technical Paper; № 471).
  18. Kapranov S.V., Kovrigina N.P., Troshchenko O.A., Rodionova N.Yu., 2020. Long-term variations of thermohaline and hydrochemical characteristics in the mussel farm area in the coastal waters off Sevastopol (Black Sea) in 2001–2018 // Continental Shelf Research. V. 206. P. 1–15. 104185. https://doi.org/10.1016/j.csr.2020.104185
  19. Kennedy W.J., Taylor J.D., Hall A., 1969. Environmental and biological controls on bivalve shell mineralogy // Biological Reviews. V. 44. P. 499–530.
  20. Maillard F., Elie N., Villain-Naud N., Lepoittevin M., Martinez A.-S., Lelon C., 2021. Male triploid oysters of Crassostrea gigas exhibit defects in mitosis and meiosis during early spermatogenesis // FEBS Open Bio. V. 12. P. 1438–1452. https://doi.org/10.1002/2211-5463.13356
  21. Marie B., Zanella-Cléon I., Guichard N., Becchi M., Marin F., 2011. Novel proteins from the calcifying shell matrix of the pacific oyster Crassostrea gigas // Marine Biotechnology. V. 13. P. 1159–1168.
  22. Marin F., Roy N.L., Marie B., 2012. The formation and mineralization of mollusk shell // Frontiers in Bioscience. V. 4. P. 1099–1125.
  23. Mouchi V., Lartaud F., Guichard N., Immel F., Rafelis M., Broussar C., Crowley Q.G., Marin F., 2016. Chalky versus foliated: a discriminant immunogold labeling of shell microstructures in the edible oyster Crassostrea gigas // Marine Biology. V. 163. № 256. P. 1–15. https://doi.org/10.1007/s00227-016-3040-6
  24. Payton L., Sow M., Massabuau J.-Ch., Ciret P., Tran D., 2017. How annual course of photoperiod shapes seasonal behavior of diploid and triploid oysters, Crassostrea gigas // PLoS ONE. V. 12. № 10. P. 1−22. https://doi.org/10.1371/journal.pone.0185918
  25. Pirozzi N.M., Hoogenboom J.P., Giepmans B.N.G., 2018. ColorEM: analytical electron microscopy for element-guided identification and imaging of the building blocks of life // Histochemistry and Cell Biology. V. 150. P. 509–520. https://doi.org/10.1007/s00418-018-1707-4
  26. Politi Y., Mahamid J., Goldberg H., Weiner S., Addadi L., 2007. Asprich mollusk shell protein: in vitro experiments aimed at elucidating function in CaCO3 crystallization // CrystEngComm. № 12. P. 1171–1177 (abstract).
  27. Sanders T., Schmittmann L., Nascimento-Schulze J.C., Melzner F., 2018. High Calcification Costs Limit Mussel Growth at Low Salinity // Frontiers in Marine Science. V. 5 Article 352. https://doi.org/10.3389/fmars.2018.00352
  28. Seung Woo Lee, Cheong Song Choi, 2007. The correlation between organic matrices and biominerals (myostracal prism and folia) of the adult oyster shell, Crassostrea gigas // Micron. V. 38. P. 58–64.
  29. Sillanpää J.K., Reis Cardoso J.C, Félix R.C., Anjos L., Power D.M., Sundell K., 2020. Dilution of Seawater Affects the Ca2+ Transport in the Outer Mantle Epithelium of Crassostrea gigas // Frontiers in Physiology, 22 January 2020. https://doi.org/10.3389/fphys.2020.00001
  30. Soisuwan S., Phommachant J., Wisaijorn W., Praserthdam P., 2014. The characteristics of green calcium oxide derived from aquatic materials. Procedia Chem. V. 9. P. 53–61. https://doi.org/10.1016/j.proche.2014.05.007
  31. Song X., Liu Z., Wang L., Song L., 2019. Recent Advances of Shell Matrix Proteins and Cellular Orchestration in Marine Molluscan Shell Biomineralization // Marine Science. Article 4. V. 6. https://doi.org/10.3389/fmars.2019.00041
  32. Suzuki M., Kogure T., Nagasawa H., 2017. Studies on the Chemical Structures of Organic Matrices and Their Functions in the Biomineralization Processes of Molluscan Shells // A Gri-Bioscience Monographs. V. 7. № 2. P. 25–39.
  33. Thomsen J., Haynert K., Wegner K.M., Melzner F., 2015. Impact of seawater carbonate chemistry on the calcification of marine bivalves // Biogeosciences. V. 12. № 14. P. 4209–4220. https://doi.org/10.5194/bg-12-4209-2015
  34. Troost K., 2010. Causes and effects of a highly successful marine invasion: case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries // Journal of Sea Research. V. 64. № 3. P. 145–165. https://doi.org/10.1016/j.seares.2010.02.004
  35. Waite J.H., Saleuddin A.S.M., Andersen S.O., 1979. Periostracin – A Soluble Precursor of Sclerotized Periostracum in Mytilus edulis L. // Journal of Comparative Physiology. V. 130. P. 301–307.
  36. Waller T.R., 1980. SEM of the shell and mantle in the order Arcoida (Mollusca, Bivalvia) // Smithsonian Contributions to Zoology. V. 313. P. 1–58.
  37. Wei L., Wang Q., Wu H., Ji C., Zhao J., 2015. Proteomic and metabolomics responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure // Journal of Proteomics. V. 112. P. 83–94. https://doi.org/10.1016/j.jprot.2014.08.010
  38. Weiner S., Addadi L., 1991. Acidic macromolecules of mineralized tissues: the controls of crystal formation // Trends Biochem. Science. V. 16. P. 252–257.
  39. Zhao X., Yu H., Kong L., Li Q., 2012. Transcriptomic Responses to Salinity Stress in the Pacific Oyster Crassostrea gigas // PLoS ONE. V. 7. № 9: e46244. https://doi.org/10.1371/ journal.pone.0046244

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (2MB)
4.

Download (4MB)
5.

Download (4MB)
6.

Download (2MB)
7.

Download (574KB)

Copyright (c) 2023 А.В. Пиркова, Л.В. Ладыгина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies