High-Temperature Electrically Conductive Polymer Composites with Single-Walled Carbon Nanotubes

Author:

Kuznetsov V. A.12,Fedorov A. A.12,Kholkhoev B. Ch.3,Tkachev E. N.1,Buinov A. S.3,Burdukovskii V. F.3

Affiliation:

1. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

2. Novosibirsk State Technical University

3. Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences

Abstract

High-temperature composite materials comprising single-walled carbon nanotubes embedded in a polybenzimidazole (PBI) polymer matrix with a weight percentage of nanotubes from 1 to 5% were prepared and characterized. Film composite samples were prepared by flow-coating from dispersions of nanotubes in 2% PBI solution in N-methyl-2-pyrrolidone. The temperature dependences of electrical resistance of the composites were studied in the range from room temperature to 300°C in a high vacuum at a pressure less than 1 × 10–3 Pa. The first heating cycle to 300°C gave rise to an increase in room-temperature electrical resistance of the samples due to the desorption of oxygen from the nanotubes. For the composites containing 5 and 1% nanotubes, the change was about 1.4 and 500 times, respectively. This increase was reversible: when the samples were transferred to the ambient air, the electrical resistance relaxed to its initial value. The thermal stability of the composites was proved by the repeatability of the subsequent heating cycles and by thermogravimetric analysis.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3