Acenaphto[1,2-k]fluoranthene: Role of the Carbon Framework Transformation for Tuning Electronic Properties

Author:

Brotsman V. A.1,Lukonina N. S.1,Rybalchenko A. V.1,Kosaya M. P.1,Ioffe I. N.1,Lysenko K. A.1,Sidorov L. N.1,Pshenichnyuk S. A.2,Asfandiarov N. L.2,Goryunkov A. A.1

Affiliation:

1. Faculty of Chemistry, Moscow State University

2. Goryunkov Institute of Molecular and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences

Abstract

Acenaphtho[1,2-k]fluoranthene (1) is synthesized via tandem cyclization during the dehydrofluorination of 1,4-di(1-naphthyl)-2,5-difluorobenzene (2) on activated γ-Al2O3. Presence of residual hydroxyl groups in alumina reduce the yield of target product 1 because of the side hydrolysis of fluoroarenes with the formation a product of partial cyclization, 9-(1-naphthyl)fluoranthen-8-ol (1b). The formation of negative ions (NI) of compounds 1 and 2 in the gas phase is studied by means of dissociative electron attachment (DEA) spectroscopy. Long-lived molecular NIs 1 and 2 are registered at the thermal energies of electrons, and patterns of their fragmentation are established. The adiabatic electron affinities of compounds 1 and 2 are estimated in the Arrhenius approximation and equal 1.17 ± 0.12 and 0.71 ± 0.07 eV, respectively, which agree with data from quantum chemical modeling at the level of the density functional theory (DFT). Electronic transitions for compounds 1 and 2 are studied via optical absorption and fluorescence spectroscopy. Fluorescence quantum yields are measured, and the resulting data are interpreted according to the time dependent DFT. The electrochemical properties of compounds 1, 1b, and 2 are studied via cyclic voltamperometry, and the levels of boundary molecular orbitals are estimated on the basis of their formal potentials of reduction and oxidation.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3