Influence of Fe<sub>3</sub>O<sub>4</sub> on Physicochemical and Photocatalytic Properties of Nanosized Barium Titanate

Author:

Ivanov K. V.1,Plotvina A. V.2,Agafonov A. V.3

Affiliation:

1. Krestov Institute of Solution Chemistry, Russian Academy of Sciencesy

2. Ivanovo State University of Chemical Technology

3. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Abstract

A procedure has been proposed for the synthesis of a nanocomposite based on barium titanate modified by adding nanodispersed magnetite using the sol–gel method in an acetic acid medium followed by annealing at 800°C. The physicochemical analysis of the products has shown that the matrix phase after annealing is barium titanate with an admixture of barium carbonate, and, in addition to magnetite, there are minor inclusions of hematite and wustite. The elemental composition of nanosized samples has been determined using energy-dispersive X-ray spectroscopy. It has been demonstrated that the concentration of introduced Fe3O4 affects the morphological and phase composition of the composites. The specific surface area and type of porosity of calcined samples have been determined by the low-temperature nitrogen adsorption/desorption method. The effect of BaTiO3, BaTiO3/Fe3O4-1%, and BaTiO3/Fe3O4-10% powders on the adsorption capacity and photocatalytic activity in the process of decolorization of the dye rhodamine B from an aqueous solution in the dark and under the action of ultraviolet light has been studied. The kinetics of adsorption in the dark and photocatalytic decomposition of rhodamine B under the action of ultraviolet radiation in an aqueous suspension of the obtained composites have been analyzed using pseudo-first and pseudo-second order kinetic models.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3