Affiliation:
1. Udmurt State Agricultural University
2. Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences
Abstract
Molecular spectroscopy in the UV and IR ranges is used to perform a comparative study of the decomposition of toluene and heptane during mechanical activation with titanium. It is shown that high-energy mechanical processing is effective for obtaining low-molecular-weight alkanes, the amounts of which are largely determined by the nature of the hydrocarbons. The effect the mill carrier’s speed of rotation has on the depth of hydrocarbon decomposition and the composition of products of the mechanical processing of the liquid phase is considered. It is shown that at a speed of 600 rpm, heptane begins to decompose at short periods of mechanical activation (MA), while toluene is stable up to 30 h MA. Considerable structural and chemical transformations occur in toluene after only 20–30 h of mechanical treatment at a speed of 890 rpm.
Publisher
The Russian Academy of Sciences
Reference25 articles.
1. Механокомпозиты – прекурсоры для создания материалов с новыми свойствами. Отв. ред. О.И. Ломовский, Новосибирск: СО РАН, 2010, 424 с.
2. Baláž P. Mechanochemistry in nanoscience and minerals engineering. Springer: Berlin, Heidelberg, 2008. https://doi.org/10.1007/978-3-540-74855-7
3. Michalchuk A.A., Boldyreva E.V., Belenguer A.M., et al. // Front. Chem. 2021. V. 9. 685789. https://doi.org/10.3389/fchem.2021.685789
4. El-Eskandarany M.S. Mechanical Alloying: Energy, Surface Protective Coating and Medical Applications. 3rd ed.; Elsevier: Oxford, UK, 2020. https://www.elsevier.com/books/mechanical-alloying/el-eskandarany/978-0-12-818180-5.
5. Baláž M. Environmental Mechanochemistry. Recycling Waste into Materials Using High-Energy Ball Milling. Springer Cham, Switzerland, 2021. https://doi.org/10.1007/978-3-030-75224-8