Affiliation:
1. St. Petersburg State University
2. Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
3. St. Petersburg State Electrotechnical University “LETI”
Abstract
Previous experimental data on the vaporization and high-temperature thermodynamic properties of hafnium and rare earth oxide ceramics are considered here. The La2O3–Sm2O3 system is for the first time studied at 2323 K using Knudsen effusion mass spectrometry. As a result of this study, the vapor composition over ceramic samples under investigation is identified, and concentration dependences of the partial pressures of vapor species over the system under study and condensed-phase thermodynamic properties are determined, namely, the component activities and the excess Gibbs energy. The enthalpy of formation from oxides and excess entropy of the La2O3–Sm2O3 system at 2323 K are determined using the Wilson polynomial. The Kohler, Redlich–Kister, and Wilson semiempirical methods were used to calculate the thermodynamic properties in the La2O3–Sm2O3–Y2O3–HfO2 and La2O3–Sm2O3–ZrO2–HfO2 quaternary systems at 2330 K using the equilibrium data gained in the relevant binary systems. The results of the calculations were compared to previous semiempirical estimates of the respective quantities for the La2O3–Y2O3–ZrO2–HfO2 and Sm2O3–Y2O3–ZrO2–HfO2 systems taken as examples. Calculations by the Wilson method are shown to provide the best match with the experimentally obtained lanthanoid oxide activities in the La2O3–Sm2O3–Y2O3–HfO2 and La2O3–Sm2O3–ZrO2–HfO2 systems.
Publisher
The Russian Academy of Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献