Deformation and Strength Properties of a Gamma-Irradiated Plasticized Binder Based on Low-Molecular-Weight Polydiene Urethane Rubbers

Author:

Nurullaev E.1,Oniskiv V. D.1,Himenko L. L.1,Ibragimova E. M.2

Affiliation:

1. Perm National Research Polytechnic University

2. Institute of Nuclear Physics, Academy of Sciences of the Republic of Uzbekistan

Abstract

The effect of gamma-radiation doses of 50, 100, and 150 kGy on the deformation and strength properties of a plasticized binder based on low-molecular-weight polydiene urethane rubbers of the PDI-3B brand has been studied. To assess changes in the strength of the plasticized binder depending on the dose of gamma irradiation, the fracture energies were calculated at temperatures of 223, 295, and 323 K. At these testtemperatures, the conditional stress increased and deformation slightly decreased depending on the dose of gamma irradiation compared with those of the original sample. Sharp changes in the deformation and strength characteristics occurred at a test temperature of 223 K; the strength of the irradiated samples increased by a factor of more than 4, and the deformation decreased slightly compared to that of the original sample. This trend persisted with an increase in the test temperature, but the difference was almost halved. Such an effect of gamma irradiation on the test material can be explained by the prevalence of crosslinking over degradation

Publisher

The Russian Academy of Sciences

Reference20 articles.

1. Molanorouzi M., Mohaved S.O. // Polymer Degradation and Stability. 2016. V. 128. P. 115.

2. Sousa F.D.B., Scuracchio C.H., Hu G.-H., Hoppe S. // Polymer Degradation and Stability. 2017. V. 138. P. 169.

3. Xu O., Li M., Han S., Zhu Y., Zhang J. // Construction and Building Materials. 2021. V. 271. 121580.

4. Ratnam C.T., Dubey K.A., Appadu S., Bhardwaj Y.K. // Recycling of Polymer Wastes by Radiation. Report of IAEA Technical Meeting. 2019. EVT1804861.Vienna, Austria. P. 24.

5. Gohs U. Recycling of Polymer Wastes by Radiation // Report of IAEA Technical Meeting. 2019. EVT1804861. Vienna, Austria. P. 26.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3