Intensification of the Process of Coal Ignition by Adding Biomass Under Flame Combustion Conditions

Author:

Zhuikov A. V.12,Glushkov D. O.2,Tsepenok A. I.3,Pleshko A. O.2

Affiliation:

1. Siberian Federal University

2. National Research Tomsk Polytechnic University

3. OOO ZiO-Enerdzhi

Abstract

The characteristics of thermal decomposition and combustion processes on the heating of fine particles (100–200 m) of Chernogorsky coal, larch wood, and mixtures based on them, including the concentrations of the main components of flue gases (CO, CO2, NOx, and H2S + SO2), were determined using moderntechniques, analytical instrumentation, and experimental equipment. The biomass contents of the fuel mixtures based on coal were 10, 20, and 30 wt %. The temperatures at which the ignition of the coke residue occurred and the combustion process was completed were established using the synchronous thermal analysis of individual solid fuels and their mixtures. Larch sawdust was more reactive than Chernogorsky coal due to the lowest temperature at which the carbon residue was ignited; therefore, the addition of even 10% biomass to coal had a positive effect on the reactivity of the mixture. Under conditions of fuel heating in a flow of air at temperatures of 500–800C, the ignition delay times were determined using a hardware–software complex for high-speed video recording of fast processes. Based on the results of the experimental studies, it was found that the ignition delay times of the test fuels in a flow of heated air varied in a range from 0.02 to 0.22 s, and the addition of 10–30 wt % biomass to coal shortened the ignition delay times of fuel mixtures by up to 50%. The analysis of flue gases upon the combustion of solid fuels made it possible to establish the concentrations of the main anthropogenic emissions; the use of biomass as an additive to coal reduced the emissions of carbondioxide, nitrogen oxides, and sulfur compounds (H2S + SO2) by 2.2–13.5, 6.2–28.9, and 18.2–33.3%, respectively.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3