Steady Gas-Droplet Flow Pattern and Heat Transfer Behind the Point of Incidence of a Shock Wave on a Flat Wall

Author:

Golubkina I. V.1,Osiptsov A. N.1

Affiliation:

1. Moscow State University, Institute of Mechanics

Abstract

The structure of a steady 2D gas-droplet flow in the near-wall region behind the point of incidence of a normal or an oblique shock wave on a plane wall is investigated. In this case, the normal wave corresponds to the Mach stem in the Mach reflection mode, and the oblique wave corresponds to the regular reflection mode of the incident oblique wave. The main aim of the study is to evaluate the effect of small liquid droplets present in the free stream on the equilibrium temperature of the adiabatic wall behind the point of wave reflection. The question is investigated: to what extent the presence of an oblique shock wave incident on the wall can enhance the effect of reducing the equilibrium wall temperature by small droplets present in the flow. The flow region is split into the outer region of “effectively inviscid flow” and the region of an asymptotic laminar boundary layer. Flow calculations in each region are based on a two-fluid model of a gas-droplet mixture, taking into account the phase transition (evaporation) on the droplet surface. The most interesting wave configurations from the point of view of heat transfer, corresponding to “fully and partially dispersed waves” with incomplete evaporation of droplets behind the reflected wave, are studied. A simple limiting scheme of the formation of a liquid film by droplets deposited on the wall is adopted, with the effects of film instability and spattering being ignored. Based on numerical calculations, the estimates are obtained for the possible decrease in the equilibrium temperature of the adiabatic wall behind the point of incidence of a shock wave in a steady supersonic gas flow containing a low concentration of liquid droplets.

Publisher

The Russian Academy of Sciences

Reference9 articles.

1. Голубкина И.В., Осипцов А.Н. Волны уплотнения с полной и частичной дисперсией в газокапельных средах с фазовыми переходами // Изв. РАН. Механика жидкости и газа. 2022. № 3. С. 44–55.

2. Леонтьев А.И. Газодинамический метод энергоразделения газовых потоков // Теплофизика высоких температур. 1997. Т. 35. № 1. С. 157–159.

3. Azanov G.M., Osiptsov A.N. The efficiency of one method of machineless gasdynamic temperature stratification in a gas flow // Int. J. Heat Mass Transfer. 2017. V. 106. P. 1125–1133. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.090

4. Виноградов Ю.А., Здитовец А.Г., Киселев Н.А., Медвецкая Н.В., Попович С.С. Измерение адиабатической температуры стенки плоской пластины, обтекаемой сверхзвуковым воздушно-капельным потоком // Изв. РАН. Механика жидкости и газа. 2020. № 5. С. 130–136. https://doi.org/10.31857/S056852812005014X

5. Golubkina I.V., Osiptsov A.N. Compressible gas-droplet flow and heat transfer behind a condensation shock in an expanding channel // Int. J. Thermal. Sci. 2022, V. 179, 107576. https://doi.org/10.1016/j.ijthermalsci.2022.107576

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3