On the Accuracy of Shock-Capturing Schemes Calculating Gas-Dynamic Shock Waves

Author:

Kolotilov V. A.1,Kurganov A. A.23,Ostapenko V. V.1,Khandeeva N. A.1,Chu S.2

Affiliation:

1. Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

2. Department of Mathematics, Southern University of Science and Technology

3. Shenzhen International Center for Mathematics and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology

Abstract

A comparative experimental accuracy study of three shock-capturing schemes (the second-order CABARET, third-order Rusanov, and fifth-order in space third-order in time A-WENO schemes) is carried out by numerically solving a Cauchy problem with smooth periodic initial data for the Euler equations of gas dynamics. In the studied example, the solution breaks down and shock waves emerge. It is shown that the CABARET and A-WENO schemes, which are constructed using nonlinear limiters as a stabilization mechanism, have approximately the same accuracy in the areas of shock wave influence, while the nonmonotone Rusanov scheme has significantly higher accuracy in these areas despite producing noticeable nonphysical oscillations in the immediate vicinities of shock waves. At the same time, the combined scheme obtained based on the Rusanov and CABARET schemes localizes shock wave fronts, which are captured in a non-oscillatory manner, and preserves higher accuracy in the areas of the shock influence.

Publisher

The Russian Academy of Sciences

Reference25 articles.

1. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сб. 1959. Т. 47. № 3. С. 271–306.

2. Cockburn B. An introduction to the discontinuous Galerkin method for convection – dominated problems // Lect. Notes Math. 1998. V. 1697. P. 150–268. https://doi.org/10.1007/BFb0096353

3. Cockburn B., Shu C.-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems // J. Sci. Comput. 2001. V. 16. № 3. P. 173–261. http://doi.org/10.1023/A:1012873910884

4. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001.

5. LeVeque R.J. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press, 2002. https://doi.org/10.1007/b79761

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3