On Model Two-Dimensional Pressureless Gas Flows: Variational Description and Numerical Algorithm Based on Adhesion Dynamics

Author:

Klyushnev N. V.1,Rykov Yu. G.1

Affiliation:

1. Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Abstract

Weak solutions of the system of pressureless gas dynamics equations in two dimensions are studied. Theoretical issues are considered, namely, the general mathematical theory of conservation laws for the system is addressed. Emphasis is placed on an important distinctive feature of this system: the emergence of strong density singularities along manifolds of different dimensions. This property is characterized as the formation of a hierarchy of singularities. In earlier application-oriented works (e.g., by A.N. Krayko, et al., including more complicated cases of 3D two-phase flows), this property was studied at the physical level of rigor. In this paper, the formation of a hierarchy of singularities is examined mathematically, since, for example, the existence of a solution with a strong singularity at a point (in the 2D case) is rather difficult to prove rigorously. Accordingly, a special numerical algorithm is used to develop mathematical hypotheses concerning solution behavior. Approaches to the construction of a variational principle for weak solutions are considered theoretically. A numerical algorithm based on approximate adhesion dynamics in the multidimensional case is implemented. The algorithm is tested on several examples (2D Riemann problem) in terms of internal convergence and is compared with mathematical results, including those obtained by other authors.

Publisher

The Russian Academy of Sciences

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Об эволюции иерархии ударных волн в двумерной изобарической среде;Известия Российской академии наук. Серия математическая;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3