Estimating the Domain of Absolute Stability of a Numerical Scheme Based on the Method of Solution Continuation with Respect to a Parameter for Solving Stiff Initial Value Problems

Author:

Kuznetsov E. B.1,Leonov S. S.12,Tsapko E. D.1

Affiliation:

1. Moscow State Aviation Institute

2. RUDN University

Abstract

The modeling of physical and technological processes often involves solving stiff initial value problems. In most cases, their exact solution is difficult to find, while numerical schemes sometimes fail to produce a sufficiently accurate solution in acceptable computation time. Moreover, for some classes of problems, numerical solution schemes are unsuitable because of their insufficient stability. This paper deals with numerical methods based on solution continuation with respect to arguments of various types that make it possible to enhance the stability of explicit numerical schemes. Most frequently, the used best argument is hardly applicable to problems in which the integral curves grow at a superpower or nearly exponential rate. Previously, the authors proposed a modification of the best argument that alleviates these disadvantages. In the present paper, we estimate the domain of absolute stability of the explicit Euler scheme as applied to problems transformed to a modified best argument of special form and refine the proof of a similar estimate for initial value problems transformed to the best argument. A test initial value problem is used to verify the resulting theoretical estimates and to analyze the application of the modified best argument of solution continuation.

Publisher

The Russian Academy of Sciences

Reference41 articles.

1. Чанг К., Хауэс Ф. Нелинейные сингулярно возмущенные краевые задачи: теория и приложения. М.: Мир, 1988. 247 с.

2. Прандтль Л. Теория несущего крыла. Ч. 1. Движение жидкости с очень малым трением. М.; Л.: ГНТИ, 1931. С. 5–11.

3. Тихонов А.Н. Системы дифференциальных уравнений, содержащие малые параметры при производных // Матем. сб. 1952. Т. 31 (73). № 3. С. 575–586.

4. Васильева А.Б. О дифференцировании решений систем дифференциальных уравнений, содержащих малый параметр // Матем. сб. 1951. Т. 28 (70). № 1. С. 131–146.

5. Бутузов В.Ф., Васильева А.Б., Нефедов Н.Н. Асимптотическая теория контрастных структур (обзор) // Автомат. и телемех. 1997. № 7. С. 4–32.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3