Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems

Author:

Shevchenko A. V.12,Golubev V. I.12

Affiliation:

1. Moscow Institute of Physics and Technology (National Research University)

2. Institute of Computer Aided Design, Russian Academy of Sciences

Abstract

Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3