Effect of the Nature and Concentration of the Fuel on the Structure and Morphology of ZnO Microspheres Produced via Spray Solution Combustion Synthesis

Author:

Ermekova Zh. S.1,Roslyakov S. I.1,Yurlov S. S.1,Bindyug D. V.1,Chernyshova E. V.1,Savilov S. V23

Affiliation:

1. National University of Science and Technology MISIS

2. Moscow State University

3. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Abstract

Synthesis of ultradisperse spherical ZnO powders was accomplished by spray solution combustion, employing four distinct fuels, namely methenamine, glycine, urea, and citric acid. Using X-ray diffraction analysis, scanning electron microscopy, and low-temperature nitrogen adsorption, the impact of the main process parameters (composition and concentration of fuel, temperature and rate of the carrier gas flow) on the structure and morphology of ZnO particles was demonstrated. A synthesis temperature of 700°C was found to be sufficient to generate crystalline ZnO with a homogeneous phase composition, regardless of the type and amount of fuel. It was shown that the initial pH of the precursor solution does not affect the formation of the ZnO phase. At rates of carrier gas flow above 4 L min–1, the presence of by-products is detected. It has been determined that the excess and type of fuel significantly affect the morphology of the synthesized ZnO microspheres and can be used to control the technological characteristics of the powder and the kinetics of sintering.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3