On Ranks of Matrices over Noncommutative Domains

Author:

Abramov S. A.1,Petkovšek M.2,Ryabenko A. A.1

Affiliation:

1. Federal Research Center “Computer Science and Control”, Russian Academy of Sciences

2. Faculty of Mathematics and Physics, University of Ljubljana

Abstract

We consider matrices with entries in some domain, i.e., in a ring, not necessarily commutative, not containing non-trivial zero divisors. The concepts of the row rank and the column rank are discussed. (Coefficients of linear dependencies belong to the domain ; left coefficients are used for rows, right coefficients for columns.) Assuming that the domain satisfies the Ore conditions, i.e., the existence of non-zero left and right common multiples for arbitrary non-zero elements, it is proven that these row and column ranks are equal, which allows us to speak about the rank of a matrix without specifying which rank (row or column) is meant. In fact, the existence of non-zero left and right common multiples for arbitrary non-zero elements of is a necessary and sufficient condition for the equality of the row and column ranks of an arbitrary matrix over. An algorithm for calculating the rank of a given matrix is proposed. Our Maple implementation of this algorithm covers the domains of differential and (-)difference operators, both ordinary and with partial derivatives and differences.

Publisher

The Russian Academy of Sciences

Reference8 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3