Analysis of Defects and Harmonic Grid Generation in Domains with Angles and Cutouts

Author:

Bezrodnykh S. I.1,Vlasov V. I.1

Affiliation:

1. Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Abstract

A survey of works concerning difficulties associated with harmonic grid generation in plane domains with angles and cutouts is given, and some new results are presented. It is well known that harmonic grids produced by standard methods in domains with cutouts or reentrant angles (i.e., interior angles greater than π) may contain defects, such as self-overlappings or exit beyond the domain boundary. It is established that, near the vertex of a reentrant angle, these defects follow from the asymptotics constructed for the underlying harmonic mapping, according to which the grid line leaving the angle vertex is tangent to one of the angle sides at the vertex (an effect referred to as “adhesion”), except for a special case. A survey of results is given for domains z of three types with angles or cutouts (L-shaped, horseshoe, and a domain with a rectangular cutout), for which standard methods for harmonic grid generation encounter difficulties. Applying the multipole method to such domains yields a harmonic mapping for them with high accuracy: the a posteriori error estimate of the mapping in the C(z) norm is 10–7 in the case of using 120 approximative functions.

Publisher

The Russian Academy of Sciences

Reference53 articles.

1. Radó T. Aufgabe 41 // Jahresbericht der Deutschen Mathematiker Vereiningung. 1926. V. 35. P. 49.

2. Kneser H. Lösung der Aufgabe 41 // Jahresbericht der Deutschen Mathematiker Vereiningung. 1926. V. 35. P. 123–124.

3. Choquet G. Sur un type de transformation analitiques généralisant la représentation conforme et définie au moyen de fonctions harmoniques // Bull. Sci. Math. 1945. V. 69. № 2. P. 156–165.

4. Duren P. Harmonic mappings in the plane, “Cambrige Tracts in Mathematics”. V. 156. Cambrige: Cambrige Univer. Press, 2004.

5. Кудрявцев Л.Д. О свойствах гармонических отображений плоских областей // Матем. сб. 1955. Т. 36 (4.12). № 2. С. 201–208.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3