Affiliation:
1. Belgorod National Research University
Abstract
A model elliptic pseudodifferential equation in a polyhedral cone is considered, and the situation when some of the parameters of the cone tend to their limiting values is investigated. In Sobolev–Slobodetskii spaces, a solution of the equation in the cone is constructed in the case of a special wave factorization of the elliptic symbol. It is shown that a limit solution of the boundary value problem with an additional integral condition can exist only under additional constraints on the boundary function.
Publisher
The Russian Academy of Sciences
Reference15 articles.
1. Ильинский А.С., Смирнов Ю.Г. Дифракция электромагнитных волн на проводящих тонких экранах (Псевдодифференциальные операторы в задачах дифракции). М.: ИПРЖР, 1996.
2. Speck F.-O. From Sommerfeld diffraction problems to operator factorisation // Constr. Math. Anal. 2019. V. 2. № 4. P. 183–216.
3. Castro L. Duduchava R., Speck F.-O. Mixed impedance boundary value problems for the Laplace-Beltrami equation // J. Integral Equations Appl. 2020. V. 32. № 3. P. 275–292.
4. Эскин Г.И. Краевые задачи для эллиптических псевдодифференциальных уравнений. М.: Наука, 1973.
5. Гахов Ф.Д. Краевые задачи. М.: Наука, 1977.