Affiliation:
1. Wilfrid Laurier University
Abstract
The structure of polynomial solutions to the Gosper’s key equation is analyzed. A method for rapid “extraction” of simple high-degree factors of the solution is given. It is shown that in cases when equation corresponds to a summable non-rational hypergeometric term the Gosper’s algorithm can be accelerated by removing non-essential dependency of its running time on the value of dispersion of its rational certificate.
Publisher
The Russian Academy of Sciences
Reference10 articles.
1. Абрамов С.А. О суммировании рациональных функций // Ж. вычисл. матем. и матем. физ. 1971. Т. 11. № 4. С. 1071–1075.
2. Gosper R.W., Jr. Decision procedure for indefinite hypergeometric summation // Proc. Nat. Acad. Sci. U.S.A., 75(1):40–42, 1978.
3. Abramov S.A., Petkovšek M. Rational normal forms and minimal decompositions of hypergeometric terms // J. of Symbolic Computation, 33(5):521–543, 2002.
4. Maple User Manual. Maplesoft, a division of Waterloo Maple Inc., 1996–2021.
5. Абрамов С.А. Элементы компьютерной алгебры линейных обыкновенных дифференциальных, разностных и q-разностных операторов. М: МЦМНО, 2012.