Affiliation:
1. Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
Abstract
The paper gives a description of the integral representation of the Shapley value for polynomial cooperative games. This representation obtained using the so-called Shapley functional. The relationship between the proposed version of the Shapley value and the polar forms of homogeneous polynomial games is analyzed for both a finite and an infinite number of participants. Special attention is paid to certain classes of homogeneous cooperative games generated by products of non-atomic measures. A distinctive feature of the approach proposed is the systematic use of extensions of polynomial set functions to the corresponding measures on symmetric powers of the original measurable spaces.
Publisher
The Russian Academy of Sciences
Reference19 articles.
1. Розенмюллер И. Кооперативные игры и рынки. М.: Мир, 1974.
2. Васильев В.А. Функционал Шепли и полярные формы однородных полиномиальных игр // Матем. тр. 1998. Т. 1. № 2. С. 24–67 (перевод: Vasil’ev V.A. The Shapley functional and the polar form of homogeneous polynomial games // Siberian Adv. Math. 1998. V. 8. N. 4. P. 109–150).
3. Ауман Р., Шепли Л. Значения для неатомических игр. М.: Мир, 1977.
4. Dehez P. On Harsanyi dividends and asymmetric values // Intern. Game Theory Rev. 2017. V. 19. № 3. P. 1–36.
5. Васильев В.А. О ядре и значении Шепли для регулярных полиномиальных игр // Сиб. матем. журнал. 2022. Т. 63. № 1. С. 77–94. (перевод: Vasil’ev V.A. On the core and Shapley value for regular polynomial games // Sib. Math. J. 2022. V. 63. № 1. P. 65–78).