Affiliation:
1. Moscow Institute of Physics and Technology (National Research University)
2. Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Abstract
A real polynomial in two variables is considered. Its expansion near the zero critical point begins with a third-degree form. The simplest forms to which this polynomial is reduced with the help of invertible real local analytic changes of coordinates are found. First, for the cubic form, normal forms are obtained using linear changes of coordinates. Altogether, there are three of them. Then three nonlinear normal forms are obtained for the complete polynomial. Simplification of the calculation of a normal form is proposed. A meaningful example is given.
Publisher
The Russian Academy of Sciences
Reference14 articles.
1. Брюно А.Д., Батхин А.Б. Алгоритмы и программы вычисления корней многочлена от одной или двух неизвестных // Программирование. 2021. № 5. С. 22–43. https://doi.org/10.31857/S0132347421050046
2. Haile D.E. On the Clifford algebra of a binary cubic form // American J. of Math. 1984. V. 106. № 6. P. 1269–1280.
3. Арнольд В.И. Нормальные формы функций в окрестности вырожденных критических точек // Успехи матем. наук. 1974. Т. 29. № 2. С. 11–49.
4. Кокс Д., Литтл Д., О’Ши Д. Идеалы, многообразия и алгоритмы. Введение в вычислительные аспекты алгебраической геометрии и коммутативной алгебры. М.: Мир, 2000. 687 с.
5. Прасолов В.В. Многочлены. 4-е изд., исправленное. М.: МЦНМО, 2014.