Predicting the Functional Dependence of the Sunspot Number in the Solar Activity Cycle Based on Elman Artificial Neural Network

Author:

Krasheninnikov I. V.1,Chumakov S. O.1

Affiliation:

1. Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN)

Abstract

The possibility of predicting the function of the time dependence of the sunspot number (SSN) inthe solar activity cycle is analyzed based on the application of the Elman artificial neural network platform tothe historical series of observational data. A method for normalizing the initial data for preliminary trainingof the ANN algorithm is proposed, in which a sequence of virtual idealized cycles is constructed using scaledduration coefficients and the amplitude of solar cycles. The correctness of the method is analyzed in a numericalexperiment based on modeling the time series of sunspots. The intervals of changing the adaptableparameters in the ANN operation are estimated and a mathematical criterion for choosing a solution is proposed.The significant asymmetry of its ascending and descending branches is a characteristic property of theconstructed functional dependence of the sunspot number cycle. A forecast of the time course for the current25th cycle of solar activity is presented and its correctness is discussed in comparison with other forecastresults and the available data of solar activity status monitoring

Publisher

The Russian Academy of Sciences

Reference22 articles.

1. – Бархатов Н.А., Королёв А.В., Пономарев С.М., Сахаров С.Ю. Долгосрочное прогнозирование индексов солнечной активности методом искусственных нейронных сетей // Изв. Вузов. Радиофизика. Т. XLIV. № 9. С. 806–814. 2001.

2. – Головко В.А. Нейронные сети: обучение, организация и применение // Минск: ИПРЖР. 255 с. 2001.

3. – Головко В.А., Краснопрошин В.В. Нейросетевые технологии обработки данных // Минск: БГУ. 263 с. 2017.

4. – Крашенинников И.В., Чумаков С.О. Метод ИНС в задаче долгосрочного прогнозирования индексов солнечной активности // Физика плазмы в солнечной системе. 16-я ежегодная конференция. М.: ИКИ РАН. С. 264. 2021.

5. – Benson B., Pan W.D., Prasad A., Gary G.A., Hu Q. Forecasting Solar Cycle 25 Using Deep Neural Networks // Sol. Phys. V. 295(65). 2020. https://doi.org/10.1007/s11207-020-01634-y

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3