Numerical Construction of the Transform of the Kernel of the Integral Representation of the Poincaré–Steklov Operator for an Elastic Strip

Author:

Bobylev A. A12

Affiliation:

1. Lomonosov Moscow State University, Moscow, 119991, Russia

2. Moscow Center for Fundamental and Applied Mathematics, Moscow, 119991, Russia

Abstract

For an isotropic stratified elastic strip we consider the Poincaré–Steklov operator that maps normal stresses into normal displacements on part of the boundary. A new approach is proposed for constructing the transform of the kernel of the integral representation of this operator. A variational formulation of the boundary value problem for the transforms of displacements is obtained. A definition is given and the existence and uniqueness are proved for a generalized solution of the problem. An iteration method for solving variational equations is constructed, and conditions for its convergence are obtained based on the contraction mapping principle. The variational equations are approximated by the finite element method. As a result, at each step of the iteration method, it is required to solve two independent systems of linear algebraic equations, which are solved using the tridiagonal matrix algorithm. A heuristic algorithm is proposed for choosing the sequence of parameters of the iteration method that ensures its convergence. Verification of the developed computational algorithm is carried out, and recommendations on the use of adaptive finite element grids are given

Publisher

The Russian Academy of Sciences

Reference20 articles.

1. Лебедев В.И., Агошков В.И. Операторы Пуанкаре-Стеклова и их приложения в анализе. М., 1983.

2. Лебедев В.И. Функциональный анализ и вычислительная математика. М., 2000.

3. Бобылев А.А. Применение метода сопряжённых градиентов к решению задач дискретного контакта для упругой полуплоскости // Изв. РАН. Механика твердого тела. 2022. № 2. С. 154-172.

4. Бобылев А.А. Алгоритм решения задач дискретного контакта для упругой полосы // Прикл. математика и механика. 2022. Т. 86. № 3. С. 404-423.

5. Уфлянд Я.С. Интегральные преобразования в задачах теории упругости. Л., 1967.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Задача одностороннего дискретного контакта для функционально-градиентной упругой полосы;Вестник Московского университета. Серия 1: Математика. Механика;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3