Asymptotics of Solutions of Linear Singularly Perturbed Optimal Control Problems with a Convex Integral Performance Index and a Cheap Control

Author:

Danilin A. R1,Shaburov A. A1

Affiliation:

1. Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia

Abstract

We consider an optimal control problem for a linear system with constant coefficients with an integral convex performance index containing a small parameter multiplying the integral term in the class of piecewise continuous controls with smooth geometric constraints. Such problems are called cheap control problems. It is shown that the limit problem will be a problem with a terminal performance index. It is established that if the terminal term of the performance index is a convex (strictly convex) and continuously differentiable function, then the performance functional in the limit problem has similar properties. It is proved that, in the general case, convergence with respect to the performance functional is valid, and under the condition of strict convexity of the terminal term of the performance index in the original problem, convergence to the minimum point of the terminal summand of the performance index in the limit problem is valid. The limit of the defining vector in the original problem is found as the small parameter tends to zero. In particular, it is shown that the first component of the defining vector in the original problem converges to the defining vector in the limit problem. The problems of controlling a point of low mass in a medium with and without resistance with a terminal part depending on both slow and fast variables are considered in detail, and complete asymptotic expansions of the defining vectors in these problems are constructed.

Publisher

The Russian Academy of Sciences

Reference18 articles.

1. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М., 1961.

2. Красовский Н.Н. Теория управления движением. Линейные системы. М., 1968.

3. Ли Э.Б., Маркус Л. Основы теории оптимального управления. М., 1972.

4. Дмитриев М.Г., Курина Г.А. Сингулярные возмущения в задачах управления // Автоматика и телемеханика. 2006. № 1. С. 3-51.

5. Глизер В.Я., Дмитриев М.Г. Асимптотика решения одной сингулярно возмущённой задачи Коши, возникающей в теории оптимального управления // Дифференц. уравнения. 1978. Т. 14. № 4. С. 601-612.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3