INITIAL PROBLEM FOR A THIRD ORDER NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF CONVOLUTION TYPE

Author:

Askhabov S. N.123

Affiliation:

1. Kadyrov Chechen State University

2. Chechen State Pedagogical University

3. Moscow Institute of Physics and Technology

Abstract

The article obtains two-sided a priori estimates for the solution of a homogeneous third-order Volterra integro-differential equation with power-law nonlinearity and a difference kernel. It is shown that the lower a priori estimate, which plays the role of a weight function when constructing a metric in the cone of the space of continuous functions, is unimprovable. Using these estimates, using the method of weight metrics (analogous to A. Bielecki’s method), a global theorem on the existence, uniqueness and method of finding a nontrivial solution to the initial problem for the specified integro-differential equation in the class of non-negative continuous functions on the positive half-axis is proved. It is shown that the solution can be found by the method of successive approximations and an estimate of the rate of their convergence to the exact solution is obtained. Examples are given to illustrate the results obtained.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3