Affiliation:
1. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
Abstract
The influence of the inertia of submicron particles on their deposition from a Stokes flow in model fine-fiber filters is considered at low Reynolds numbers. The fiber collection efficiencies are calculated by the limiting trajectory method for a cell model of the filter and for a row of parallel fibers oriented perpendicularly to the direction of the gas flow for the ranges of interception parameter R = 0.01–1, Stokes number Stk = 0–20, and Knudsen number Kn = 0–1. The simulation results are consistent with the experimental data.
Publisher
The Russian Academy of Sciences
Reference36 articles.
1. Fuchs N.A. The Mechanics of Aerosols. N.Y.: Dover, 1989.
2. Davies C.N. Air Filtration. N.Y.: Academic Press, 1973.
3. Brown R.C. Air Filtration. Oxford: Pergamon Press, 1993.
4. Kirsch A.A., Stechkina I.B. The theory of aerosol filtration with fibrous filters, Ch. 4, in Fundamentals of Aerosol Science / Ed. by Shaw D.T. N.Y.: Wiley-Interscience. 1978. P. 165‒256.
5. Chernyakov A.L., Kirsch A.A., Kirsch V.A. Elastic vibrations of a fiber due to impact of an aerosol particle and their influence on the efficiency of fibrous filters // Phys. Rev. E. 2011. V. 83. № 5. P. 056303. https://doi.org/10.1103/PhysRevE.83.056303