Noncovalent Stabilization of Water-Soluble Zinc Phthalocyaninate in Graphene Oxide Hydrosol

Author:

Nugmanova A. G.1,Gorshkova A. I.2,Yagodin A. V.1,Averin A. A.1,Kalinina M. A.1

Affiliation:

1. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

2. Department of Materials Sciences, Moscow State University, 119991, Moscow, Russia

Abstract

The possibility of stabilization of zinc(II) 2,3,9,10,16,17,23,24-octa[(3,5-sodium biscarboxylate)phenoxy] phthalocyaninate (ZnPc16) by its hybridization with the surface of graphene oxide (GO) sheets via van der Waals or coordination bonds with functional groups of the carbon matrix in the GO hydrosols has been investigated. A combination of physicochemical analysis methods (scanning electron microscopy, fluorescence microscopy, powder X-ray diffraction, and Raman spectroscopy) has been employed to confirm the integration of ZnPc16 with GO nanosheets and to study the morphology and structure of the obtained hybrid materials. Using electronic absorption spectroscopy, it has been found that, regardless of the hybridization method, the binding of the macrocycles to the inorganic particles increases the stability of ZnPc16 in an aqueous medium being irradiated with visible light. The analysis of spectral kinetic data has shown that, in contrast to the system obtained by direct integration of ZnPc16 and GO, the hybrid material formed by coordination bonding of the components via zinc acetate (Zn(OAc)2) as a binding metal cluster is able to exhibit photocatalytic properties in oxidative photodegradation of some model organic pollutant substrates (rhodamine 6G, 1,5-dihydroxynaphthalene, and 1,4-nitrophenol). The proposed colloid-chemical approach to the stabilization of photoactive water-soluble phthalocyaninates makes it possible to increase their resistance to photoinduced self-oxidation and can be adapted for various derivatives of tetrapyrrole compounds possessing photosensitizing properties.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3