ANALYSIS OF ENTROPY PRODUCTION OF IMMISCIBLE MICROPOLAR AND NEWTONIAN FLUIDS FLOW THROUGH A CHANNEL: EFFECT OF THERMAL RADIATION AND MAGNETIC FIELD

Author:

YADAV PRAMOD KUMAR1,Kumar Ankit1,FILIPPOV A. N.2

Affiliation:

1. Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.

2. Department of Higher Mathematics, National University of Oil and Gas “Gubkin University,” Moscow, Russia.

Abstract

This paper aims to analyze the thermal characteristics, entropy production, flow velocity and Bejan number profile for immiscible nature of micropolar and Newtonian viscous fluid within a channel. Here, the authors emphasize the influence of thermal radiation and oriented magnetic field on the thermal profile and entropy generation of two different types of non-miscible and incompressible micropolar and Newtonian fluids in a channel. The viscous dissipation and thermal radiation effect are also considered in the thermal energy equation. In this work, the entropy production is analyzed within a channel due to oriented magnetic field and thermal radiation. A constant pressure gradient acts on the entry zone of flow domain and static walls of the channel are isothermal. In this problem, we tried to simulate thermal radiation in energy equation by adopting the Rosseland’s diffusion approximation. According to geometrical configuration of the problem, the conditions of no-slip at the walls of the channel and continuity of thermal exchange, microrotation, shear stress, flow velocity and heat flux at the interface of immiscible fluids are used. The governing equations for the flow of immiscible fluids are solved by reliable technique and exact solution for thermal characteristics and flow field are evaluated. The mathematical results of thermal profile and flow characteristics are used to obtain the Bejan number profile as well as the entropy production number profile. The influence of various thermo-physical governing parameters such as radiation parameter, Reynolds number, inclination angle parameter, viscous dissipation parameter, micropolarity parameter and Hartmann number, which describe the physical significance of the present model, on the flow and thermal characteristics of the model are discussed graphically. The newly obtained results of this study are verified with previous published results.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3