Morphological Transitions in Solutions of Macromolecules with Solvophilic Backbone and Orientationally Mobile Solvophobic Side Groups

Author:

Shuldyakov G. A.1,Buglakov A. I.1,Larin D. E.12

Affiliation:

1. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

2. Department of Physics, Moscow State University

Abstract

A theoretical model describing the self-assembly in dilute solutions of amphiphilic macromolecules containing the backbone built of the solvophilic units (the P groups) and the solvophobic side chains (the H groups) possessing orientational mobility relative to the backbone units has been elaborated. In the framework of strong segregation limit (The size of the insoluble regions of the formed micelles is on the order of the hydrophobic side chains), state diagrams of the solution have been calculated with and without accounting for the orientational entropy contribution of the side groups to the total free energy of the solution at different thermodynamic qualities of solvent for the macromolecules and the grafting density of the H groups; the regions of stability of spherical and cylindrical micelles as well as planar bilayers (vesicles) have been revealed. It has been found that the contribution of the orientational entropy significantly affects the view of the state diagrams. In the case of considering the orientational mobility, the conditions of the cylindrical micelle stability are very sensitive to the change in the grafting density of the side groups. This sensitivity can be the reason why the formation of long cylindrical (wormlike) micelles is not observed in experiments and computer simulations. As earlier demonstrated at a qualitative level, the orientational mobility of the side groups can lead to the emergence of the orientation-induced attraction between the polymer micelles (A. I. Buglakov, D. E. Larin, and V. V. Vasilevskaya, Polymer 232, 124160 (2021)). In this study, exact analytical calculations of the energy of orientation-induced attraction for the case of the interaction between two planar bilayer micelles has been performed. At distances being of the order of the size of the side H group, the orientation-induced attraction forces are much stronger than the van der Waals forces and, hence, the orientation-induced attraction can be decisive in the formation of large aggregates observed in experiments.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3