On an Analytical Representation of an Integral Related to the Fock Integral That Appears in Calculations of the Electromagnetic Fields of Dipole Sources at the Interface between Two Half-Spaces

Author:

Kevorkyants S. S.1

Affiliation:

1. Geoelectromagnetic Research Centre, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Abstract

Abstract—The Fock integral is called after Fock who introduced it for the theoretical analysis of the electromagnetic field of magnetic dipoles at the boundary of a uniform conducting (nonmagnetic) half-space and obtained its analytical expression in terms of cylindrical functions. Detailed analytical representations of integrals, where all components of the fields of the vertical and horizontal magnetic dipoles are expressed, are reported in [A.V. Veshev et al., 1971]. To obtain analytical expressions for similar integrals representing the components of the fields of electric dipoles in a similar model, it is necessary to consider not only the Fock integral but also another related integral conditionally called the Fock integral 1 whose analytical expression is still unknown. The aims of this work are to derive an inhomogeneous linear first-order differential equation for this integral with the corresponding boundary conditions and to obtain the analytical representation of the Fock integral 1 by solving this equation. The result of this work will allow one to simplify the simulation of fields in a uniform half-space and to improve the interpretation of electromagnetic data due to more accurate and reliable estimates of the normal field in such models of a host medium.

Publisher

The Russian Academy of Sciences

Reference6 articles.

1. Бейтмен Т., Эрдейи А. Высшие трансцендентные функции. Т. 2. М.: Наука. 1974. 296 с.

2. Бурсиан В.Р. Теория электромагнитных полей, применяемых в электроразведке. Л.: Недра. 1972. 367 с.

3. Вешев А.В., Ивочкин В.Г., Игнатьев Г.Ф. Электромагнитное профилирование. Л.: Недра. 1971. 216 с.

4. Справочник по специальным функциям с формулами, графиками, и математическими таблицами / М. Абрамовиц, И. Стиган (ред.). М.: Наука. 1979. 832 с.

5. Эльсгольц Л.Э. Дифференциальные уравнения. М. 2008. 320 c.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3