Combination of Bases and an Evaluation of the Set of Extremal 3-Uniform Hypergraphs

Author:

Beretskii I. S.1,Egorova E. K.12,Mokryakov A. V.13,Tsurkov V. I.2

Affiliation:

1. Moscow Aviation Institute (National Research University), 125080, Moscow, Russia

2. Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, 119333, Moscow, Russia

3. Kosygin Russian State University (Technologies, Design, Art), 119071, Moscow, Russia

Abstract

The main problem with hypergraphs is their storage. If the hypergraph does not contain singularities, then sparse matrices are often used to describe it. Adjacency matrices are often used to work with k-uniform hypergraphs, but they take up a large amount of space in computer memory and, in general, storage of k-uniform arrays is not very convenient. Here we propose one solution for describing and storing extremal k-uniform hypergraphs. This base is a unique characteristic of an extremal hypergraph that uniquely describes it. In addition, bases can be used to search for the power of extremal k-uniform hypergraphs. We present base enumeration algorithms and present a hypothesis about the analytical form of formulas describing the cardinality of the set of extremal k-uniform hypergraphs. For this task, the base combination operation, also introduced here, is used.

Publisher

The Russian Academy of Sciences

Reference28 articles.

1. Иванов М.В., Калашников И.В., Нуруллаев М.М. Исследование структурных свойств сети интернет на основе метаграфовых моделей // Информатика и автоматизация. 2020. Т. 19. № 4. С. 880–905.

2. Миков А.И., Миков А.А. Свойства геометрических гиперграфов беспроводных компьютерных сетей // Информатизация и связь. 2020. № 4. С. 60–66. https://doi.org/10.34219/2078-8320-2020-11-4-60-66

3. Герасименко Е.М., Дышаев Н.Н. Персонализация в фолксономиях в виде гиперграфов на основе кластеризации тегов // Информатика, вычислительная техника и инженерное образование. 2019. № 2 (35). С. 11–15.

4. Зыков А.А. Гиперграфы // УМН. 1974. Т. XXIX. № 6 (180). С. 89–154.

5. Александров П.С. Комбинаторная топология. М.: Гостехтеориздат, 1947. 660 с.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3