Neural Networks for Searching for Meteoral Signals in the Data of the Orbital Telescope “UV Atmosphere”

Author:

Zotov M.1,Sokolinskii D.2,Arifullin A.2

Affiliation:

1. Skobeltsyn Institute of Nuclear Physics, Moscow State University

2. Moscow State University

Abstract

Since 2019, the Russian–Italian experiment “UV Atmosphere” (Mini-EUSO) has been operational on the International Space Station. The primary instrument of this experiment is a wide-angle telescope positioned toward nadir. Its main objective is to generate an ultraviolet map of the Earth’s nocturnal atmosphere radiation. This map serves as a crucial element in the preparation of a large-scale experiment involving the study of extremely high-energy cosmic rays using an orbiting telescope. Similar to the preceding TUS experiment, the “UV Atmosphere” instrument detects signals from various atmospheric processes in the ultraviolet range, including the luminosity of meteors. In this paper, we describe two simple neural networks that effectively extract meteor signals from the overall data stream. The proposed approach can also be applied to identify track-like signals of various origins in the data obtained from fluorescent and Cherenkov telescopes.

Publisher

The Russian Academy of Sciences

Reference36 articles.

1. J. H. Adams, S. Ahmad, J.-N. Albert, D. Allard, et al., Exp. Astron. 40(1), 3 (2015).

2. M. E. Bertaina and JEM-EUSO Collaboration, in 37th International Cosmic Ray Conference, held 12–23 July 2021, Berlin, Germany, PoS(ICRC2021) 395, id. 406 (2022).

3. P. A. Klimov, M. I. Panasyuk, B. A. Khrenov, G. K. Garipov, et al., Space Sci. Rev. 212, 1687 (2017).

4. B. A. Khrenov, P. A. Klimov, M. I. Panasyuk, S. A. Sha-rakin, et al., J. Cosmology and Astroparticle Phys. 9, id. 006 (2017).

5. J. H. Adams, S. Ahmad, J.-N. Albert, D. Allard, et al., Exp. Astron. 40, 253 (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3