Dust Particles in Space: Opportunities for Experimental Research

Author:

Kuznetsov I. A.1,Zakharov A. V.1,Zelenyi L. M.1,Popel S. I.1,Morozova T. I.1,Shashkova I. A.1,Dolnikov G. G.1,Lyash A. N.1,Dubov A. E.1,Viktorov M. E.2,Topchieva A. P.3,Klumov B. A.4,Usachev A. D.4,Lisin E. A.4,Vasiliev M. M.4,Petrov O. F.4,Poroikov A. Yu.5

Affiliation:

1. Space Research Institute, Russian Academy of Sciences

2. Institute of Applied Physics, Russian Academy of Sciences

3. Institute of Astronomy, Russian Academy of Sciences

4. Joint Institute for High Temperatures, Russian Academy of Sciences

5. National Research University “Moscow Power Engineering Institute” (MPEI)

Abstract

Space dust and dusty (complex) plasma are one of the most common manifestations of matter in space. Non-atmospheric bodies of the Solar System, such as the Moon, asteroids, comets, some satellites of the planets, are directly affected by external factors of outer space—solar electromagnetic radiation, interplanetary plasma flows, cosmic rays, micrometeors. Under the influence of these factors, regolith is formed on the surface of bodies during geological epochs. Under the influence of impacts of high-speed micrometeors, dust particles of regolith scatter at different speeds. Most of them return to the surface, but some form dust clouds or lose their gravitational connection with the parent body. Under the action of solar radiation, the surface acquires an electric charge, and dust particles under certain conditions can break away from the regolith surface and levitate. Observational evidence of such dynamic phenomena has been recorded on the Moon and on some asteroids. The study of the physical processes responsible for the activation of dust particles and their dynamics is of great interest for fundamental science and practical purposes. The article discusses the main processes occurring under the influence of outer space factors on regolith, as a result of which dust particles move and a near-surface plasma-dust exosphere is formed. Unresolved issues are discussed. Methods and means of laboratory modeling in studying the activation and dynamics of dust particles are considered.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3