Affiliation:
1. Joint Institute for High Temperatures, Russian Academy of Sciences
Abstract
In this paper, a computational-theoretical analysis of the possibilities of using the method of phase-contrast X-ray radiography for the study of low-contrast turbulent flows in laser plasma in experiments with astrophysical similarity is carried out. By modeling the passage of hard coherent X-ray radiation through test objects, we studied the parameters of a laboratory experiment that affect the contrast and resolution of the resulting phase-contrast images. The limiting scale for measuring the frequency-spatial spectrum of image power was determined, on which the manifestation of artifacts from the superimposition of diffraction effects from neighboring objects is not yet critical for the correct interpretation of the results. Optimal object-detector distances are found that provide resolution of the power spectrum of a turbulent flow on micron scales. These results are relevant for future laboratory experiments on the development of instabilities in plasma with astrophysical similarity up to the stage of energy dissipation.
Publisher
The Russian Academy of Sciences
Reference22 articles.
1. T. A. Pikuz, A. Y. Faenov, N. Ozaki, N. J. Hartley, et al., J. Appl. Phys. 120, 035901 (2016).
2. L. Gaus, L. Bischoff, M. Bussmann, E. Cunningham, et al., Phys. Rev. Res. 3, 043194 (2021).
3. T. Kluge, M. Rödel, J. Metzkes-Ng, A. Pelka, et al., Phys. Rev. X. 8, 31068 (2018).
4. S. H. Glenzer, L. B. Fletcher, E. Galtier, B. Nagler, et al., J. Phys. B At. Mol. Opt. Phys. 49, 092001 (2016).
5. В. В. Королев, Е. О. Васильев, И. Г. Коваленко, Ю. А. Щекинов, Астрон. журн. 92, 559–577 (2015).