Comparison of Instabilities of Annular Perturbations on the Background of Pulsating 2D and 3D Self-Gravitating Models

Author:

Mirtadjieva K. T.12,Nuritdinov S. N.1

Affiliation:

1. Ulugh Beg Astronomical Institute, Uzbek Academy of Sciences

2. National University of Uzbekistan

Abstract

The problem of gravitational instability of the observed annular (ring-like) structural perturbation modes on the background of a nonlinearly pulsating spherical model based on the well-known equilibrium Camm ball is studied. Nonstationary analogues of dispersion relations for the perturbation modes under consideration within this model are obtained. Critical diagrams of the initial virial ratio versus the model rotation parameter are constructed for each case. A comparative analysis of the increments of gravitational instability of annular perturbation modes on the background of spherical and disk-shaped nonlinearly pulsating models is also performed. An analysis of the results shows that the annular perturbation modes are predominantly more unstable in a nonstationary disk than in a spherical nonequilibrium model, regardless of the rotation parameters and the initial virial ratio of the systems. The article is partly based on a report presented at the conference “Modern Stellar Astronomy-2022” held at the Caucasian Mountain Observatory of the Sternberg Astronomical Institute of Lomonosov Moscow State University, November 8–10, 2022.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3