An Optimal Choice of Characteristic Polynomial Roots for Pole Placement Control Design

Author:

Alexandrov V. A.,

Abstract

The problem of finding the arrangement of closed-loop control system poles that minimizes an objective function is considered. The system optimality criterion is the value of the H∞ norm of the frequency transfer function relative to the disturbance with constraints imposed on the system pole placement and the values of the H∞ norm of the sensitivity function and the transfer function from measurement noise to control. An optimization problem is formulated as follows: the vector of variables consists of the characteristic polynomial roots of the closed loop system with the admissible values restricted to a given pole placement region; in addition to the optimality criterion, the objective function includes penalty elements for other constraints. It is proposed to use a logarithmic scale for the moduli of the characteristic polynomial roots as elements of the vector of variables. The multi-extremality problem of the objective function is solved using the multiple start procedure. A coordinate descent modification with a pair of coordinates varied simultaneously is used for search.

Publisher

The Russian Academy of Sciences

Reference18 articles.

1. 1. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems Subject to Exogenous Disturbances: Linear Matrix Inequalities Technique), Moscow: LENAND, 2014.

2. 2. Besekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo regulirovaniya (The Theory of Automatic Regulation Systems), Moscow: Nauka, 1966.

3. 3. Aleksandrov, A.G., Stability Margins of the Systems of Optimal and Modal Control, Autom. Remote Control, 2007, vol. 68, no. 8, pp. 1296-1308.

4. 4. Chestnov, V.N., Design of Controllers of Multidimensional Systems with a Given Radius of Stability Margins Based on the H∞-optimization Procedure, Autom. Remote Control, 1999, vol. 60, no. 7, pp. 986-993.

5. 5. Astrom, K.J. and Murray, R.M., Feedback Systems: an Introduction for Scientists and Engineers, New Jersey: Princeton University Press, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3