Affiliation:
1. Keldysh Institute of Applied Mathematics Russian Academy of Sciences
Abstract
For the first time, bicompact schemes are generalized to non-stationary Navier–Stokes equations for a compressible heat-conducting fluid. The proposed schemes have an approximation of the fourth order in space and the second order in time, are absolutely stable (in the frozen-coefficients sense), conservative, and efficient. One of the new schemes is tested on several two-dimensional problems. It is shown that when the mesh is refined, the scheme converges with an increased third order. A comparison is made with the WENO5-MR scheme. The superiority of the chosen bicompact scheme in resolving vortices and shock waves, as well as their interaction, is demonstrated.
Publisher
The Russian Academy of Sciences
Reference19 articles.
1. Толстых А.И. Компактные и мультиоператорные аппроксимации высокой точности для уравнений в частных производных. М.: Наука, 2015, 350 с.
2. De La Llave Plata M., Couaillier V., Pape M.-C. // Comput. Fluids. 2018. V. 176. P. 320–337.
3. Faranosov G.A., Goloviznin V.M., Karabasov S.A., Kondakov V.G., Kopiev V.F., Zaitsev M.A. // Comput. Fluids. 2013. V. 88. P. 165–179.
4. Головизнин В.М., Четверушкин Б.Н. // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 8. С. 20–29.
5. Рогов Б.В., Михайловская М.Н. // Матем. моделирование. 2008. Т. 20. № 1. С. 99–116.