A STABILITY ESTIMATE IN THE SOURCE PROBLEM FOR THE RADIATIVE TRANSFER EQUATION

Author:

Romanov V. G.1

Affiliation:

1. Sobolev Institute of Mathematics

Abstract

It is given a stability estimate of a solution of a source problem for the stationary radiative transfer equation. It is suppose that the source is an isotropic distribution. Earlier stability estimates for this problem were known in a partial case of the emission tomography problem only, when the scattering operator vanishes, and for the complete transfer equation under additional and difficult in checking conditions for the absorption coefficient and the scattering kernel. In the present work, we suggest a new and enough simple approach for obtaining a stability estimate for the problem under the consideration. The transfer equation is considered in a circle of the two-dimension space. In the forward problem, it is assumed that incoming radiation is absent. In the inverse problem for recovering the unknown source some data for solutions of the forward problem related to outgoing radiation are given. The obtained result can be used for an estimation of the summary density of distributed sources of the radiation.

Publisher

The Russian Academy of Sciences

Reference13 articles.

1. Наттерер Ф. Математические аспекты компьютерной томографии. М.: Мир. 1990. 279 с.

2. Finch D.V. Uniqueness for attenuated X-ray transformin the physical range // Inverse Problems. 1986. V. 2. P. 197–203.

3. Мухометов Р.Г. Оценка устойчивости решения одной задачи компьютерной томографии // Вопросы корректности задач анализа. Новосибирск. Изд-во: Институт математики СО АН СССР. 1989. С. 122–124.

4. Шарафутдинов В.А. О задаче эмиссионной томографии для неоднородных сред // Доклады РАН. 1992. Т. 326. № 2. С. 446–448.

5. Арбузов Е.М., Бухгейм А.Л., Казанцев С.Г. Двумерная проблема томографии и теория А-аналитических функций // Алгебра, геометрия, анализ и математическая физика (ред: Решетняк Ю.Г., Бокуть Л.А., Водопьянов С.К., Тайманов И.А.). Новосибирск. Изд-во: Институт математики СО РАН. 1997. С. 6–20.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3