Affiliation:
1. Keldysh Institute of Applied Mathematics of RAS
Abstract
A method has been developed for the numerical solution of a nonlinear equation describing the diffusion transfer of radiation energy. The method is based on the introduction of the second time derivative with a small parameter into the parabolic equation and an explicit difference scheme. Explicit approximation of the initial equation makes it possible to implement on its basis an algorithm that is effectively adapted to the architecture of high-performance computing systems. The new scheme provides, in comparison with the original scheme, a larger time integration step and a sufficiently high resolution quality of the solution structure, providing the second order of accuracy. A heuristic algorithm for choosing the parameters of a three-layer difference scheme is proposed. A promising field of application of the method can be problems of plasma physics and astrophysics.
Publisher
The Russian Academy of Sciences
Reference12 articles.
1. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Физматлит, 2008. 653 с.
2. Mihalas D., Mihalas B. Foundations of Radiation Hydrodynamics. Oxford University Press Inc., 1984. 718 p.
3. Четверушкин Б.Н. Математическое моделирование задач динамики излучающего газа. М.: Наука, 1985, 304 с.
4. Осипов В.П., Четверушкин Б.Н. Вычислительные алгоритмы для систем с экстрамассивным параллелизмом // Журнал вычислительной математики и математической физики. 2020. Т. 60. № 5. С. 802–814. Osipov V.P., Chetverushkin B.N. Numerical Algorithms for Systems with Extramassive Parallelism // Computational Mathematics and Mathematical Physics. 2020. V. 60. № 5. P. 783–794. https://doi.org/10.1134/S096554252005011510.1134/S0965542520050115https://doi.org/10.31857/S0044466920050117
5. Жуков В.Т., Новикова Н.Д., Феодоритова О.Б. Адаптивный чебышевский итерационный метод // Математическое моделирование. 2018. Т. 30. № 10. С. 67–85. Zhukov V.T., Novikova N.D., Feodori-tova O.B. An adaptive Chebyshev iterative method // Mathematical Models and Computer Simulations. 2019. V. 11. Iss. 3. P. 426–437. https://doi.org/10.1134/S2070048219030165