MATHEMATICAL MODELING OF TUNGSTEN MELTING IN EXPOSURE TO PULSED ELECTRON BEAM
-
Published:2023-01-01
Issue:1
Volume:509
Page:101-105
-
ISSN:2686-9543
-
Container-title:Доклады Российской академии наук. Математика, информатика, процессы управления
-
language:
-
Short-container-title:Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
Author:
Lazareva G. G.1, Arakcheev A. S.2, Popov V.A.2
Affiliation:
1. Рeoples Friendship University of Russia 2. Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences
Abstract
The paper is devoted to mathematical modeling of the melting process in a sample under the influence of a pulsed thermal load based on the solution of the two-phase Stefan problem. The free boundary is ignoring during the calculation, since the numerical model is based on the Samarsky approach. The calculation in axially symmetric geometry allowed us to show that about a quarter of the incident energy is consumed in the center of the melt region. This is five times more than estimates based on the solution of the one-dimensional heat equation give. Considering the evaporation of the substance a good correspondence between the calculated and experimental temperatures of the cooling surface and the rate of narrowing of the melt region is obtained. The results of mathematical modeling confirmed the existence of an evaporation cooling mode when tungsten is heated by an electron beam significantly above the melting threshold.
Publisher
The Russian Academy of Sciences
Reference15 articles.
1. Carpentier-Chouchana S., Hirai T., Escourbiac F., Durocher A., Fedosov A., Ferrand L., Firdaouss M., Kocan M., Kukushkin A.S., Jokinen T., Komarov V., Lehnen M., Merola M., Mitteau R., Pitts R.A., Stangeby P.C., Sugihara M., “Status of the ITER full-tungsten divertor shaping and heat load distribution analysis” Physica Scripta, T. 159, 014002, 2014. 2. Shi Y., Miloshevsky G., Hassanein A., “Boiling induced macroscopic erosion of plasma facing components in fusion” Fusion Engineering and Design, Т. 86(2–3), p. 155–162, 2011. 3. Huber A., Arakcheev A., Sergienko G., Steudel I., Wirtz M., Burdakov A.V., Coenen J.W., Kreter A., Linke J., Mertens Ph., Philipps V., Pintsuk G., Reinhart M., Samm U., Shoshin A., Schweer B., Unterberg B., Zlobinski M., “Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten” Physica Scripta, T. 159, 014005, 2014. 4. Safronov V.M., Arkhipov N.I., Klimov N.S., Landman I.S., Petrov D.S., Podkovyrov V.L., Poznyak I.M., Toporkov D.A., Zhitlukhin A.M. , “Investigation of erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER” Problems of Atomic Science and Technology. Series: Plasma Physics (14), pp. 52–54, 2008. 5. Huber A., Burdakov A., Zlobinski M., Wirtz M., Coenen J. W., Linke J.,. Mertens Ph, Philipps V., Pintsuk G., Schweer B., Sergienko G., Shoshin A., Samm U., Unterberg B., “Investigation of the impact on tungsten of transient heat loads induced by laser irradiation, electron beams and plasma guns” Fusion Science and Technology, 63 (1T), pp. 197–200, 2013.
|
|